Verification of Concurrent Programs
under Relaxed Memory Models

Moscow State University

Roland Meyer

Technische Universitat Kaiserslautern

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 1/33



Concurrent Programs with Shared Memory

@ Finite number of shared variables {x,y, xy,...}

e Finite data domain {d, do, d1,...}

@ Finite number of finite-control threads Ti,..., T, with operations:
W(X’ d)’ r(X’ d)
x=y=0
Thread 1 Thread 2

a:x=1 p:y=1

b: if(y ==0){ q: if(x == 0){

c: crit.sect.1 r: crit.sect.2

d:} s:}

Dekker’'s mutual exclusion protocol.

Roland Meyer (TU-KL)

Verification under Relaxed Memory Models Moscow December 2013

2/33



Sequential Consistency (SC) Semantics [Lamport 1979]

@ Threads directly write to and read from memory
@ Classical interleaving semantics

» Computations of different threads are shuffled

» Program order is preserved for each thread

x=y=0
Thread 1

Thread 1 Thread 2 pc=a
a:x=1 p:y=1
b:if(y ==0){ q: if(x ==0){ Thread 2
c: crit.sect.1 r: crit.sect.2

C =

d:} s:} P P

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow

Mem

December 2013

3/33



Sequential Consistency (SC) Semantics [Lamport 1979]

@ Threads directly write to and read from memory
@ Classical interleaving semantics

» Computations of different threads are shuffled

» Program order is preserved for each thread

x=y=0 Mem
Thread 1 x
Thread 1 Thread 2 pc=b 1
a:x=1 p:y=1
b:if(y ==0){ q: if(x ==0){ Thread 2 y
c: crit.sect.1 r: crit.sect.2 0
pc=p
d:} s:}
Roland Meyer (TU-KL) Verification under Relaxed Memory Models

Moscow December 2013 3/33



Sequential Consistency (SC) Semantics [Lamport 1979]

@ Threads directly write to and read from memory
@ Classical interleaving semantics

» Computations of different threads are shuffled

» Program order is preserved for each thread

x=y=0 Mem

Thread 1 x
Thread 1 Thread 2 pc=c 1

a:x=1 p:y=1

b:if(y ==0){ q: if(x ==0){ Thread 2 y

c: crit.sect.1 r: crit.sect.2 0
pc=p

d:} s:}

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 3/33



Sequential Consistency (SC) Semantics [Lamport 1979]

@ Threads directly write to and read from memory
@ Classical interleaving semantics

» Computations of different threads are shuffled

» Program order is preserved for each thread

x=y=0 Mem

Thread 1 x
Thread 1 Thread 2 pc=c 1

a:x=1 p:y=1

b:if(y ==0){ q: if(x ==0){ Thread 2 y

c: crit.sect.1 r: crit.sect.2 1
pc=q

d:} s:}

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 3/33



Sequential Consistency (SC) Semantics [Lamport 1979]

@ Threads directly write to and read from memory
@ Classical interleaving semantics

» Computations of different threads are shuffled

» Program order is preserved for each thread

x=y=0

6 \
Thread 1 Thread 2 Thriad : ‘(\O\
pc=c o L
a:x=1 p:y=1 C\\)S\
b if(y == 0){ g if(x == 0){ 7 \ et y
c: crit.sect.1 r: crit. sect.2 e 1
d:} s:} \h\) 1

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 3/33



Total Store Ordering (TSO) Semantics [SPARC 1994, x86]

Sequential Consistency forbids compiler and hardware optimizations

@ Hence is not implemented by any processor

Processors have various buffers to reduce latency of memory accesses

Behavior captured by relaxed memory models

@ Here: Total Store Ordering (TSO) memory model

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 4 /33



Total Store Ordering (TSO) Semantics [SPARC 1994, x86]

@ TSO architectures have write buffers
o FIFO buffers that store writes for later execution
@ Read takes value from memory if no write to that variable is buffered

@ Otherwise read value of last write in the buffer on that variable

x=y=0 Mem
Thread 1
Thread 1 Thread 2 pc=a 0
a:x=1 p:y=1
b:if(y == 0){ q:if(x ==0){ Thread 7 ———— y
c: crit.sect.1 r: crit.sect.2 . 0
d:} s:} pe=p

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 5/33



Total Store Ordering (TSO) Semantics [SPARC 1994, x86]

@ TSO architectures have write buffers
o FIFO buffers that store writes for later execution
@ Read takes value from memory if no write to that variable is buffered

@ Otherwise read value of last write in the buffer on that variable

x=y=0 Mem
Thread 1 —/— %
Thread 1 Thread 2 pc— b w(x,1)
a:x=1 p:y=1
b:if(y == 0){ q:if(x ==0){ Thread 7 ———— y
c: crit.sect.1 r: crit.sect.2 . 0
d:} s:} pe=p

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 5/33



Total Store Ordering (TSO) Semantics [SPARC 1994, x86]

@ TSO architectures have write buffers
o FIFO buffers that store writes for later execution
@ Read takes value from memory if no write to that variable is buffered

@ Otherwise read value of last write in the buffer on that variable

x=y=0 Mem
Thread 1l ————— _ x
Thread 1 Thread 2 pe—c w(x,1)
a:x=1 p:y=1
b:if(y == 0){ q:if(x ==0){ Thread 7 ———— y
c: crit.sect.1 r: crit.sect.2 . 0
d:} s:} pe=p

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 5/33



Total Store Ordering (TSO) Semantics [SPARC 1994, x86]

@ TSO architectures have write buffers
o FIFO buffers that store writes for later execution
@ Read takes value from memory if no write to that variable is buffered

@ Otherwise read value of last write in the buffer on that variable

x=y=0 Mem

Thread 1 —/—
Thread 1 Thread 2 pc=c w(x,1) 0

a:x=1 p:y=1

b:if(y ==0){ q:if(x ==0){ Thread 2 —m—————— y

c: crit.sect.1 r: crit.sect.2 w(y,1) 0
pc=gq —_—

d:} st}

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 5/33



Total Store Ordering (TSO) Semantics [SPARC 1994, x86]

@ TSO architectures have write buffers
o FIFO buffers that store writes for later execution
@ Read takes value from memory if no write to that variable is buffered

@ Otherwise read value of last write in the buffer on that variable

x=y=0 Mem
Thread 1l ————— _ x
Thread 1 Thread 2 pe—c w(x,1)
a:x=1 p:y=1
b:if(y == 0){ q:if(x ==0){ Thread 7 ———— y
c: crit.sect.1 r: crit.sect.2 . 1
d:} s:} pe=d

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 5/33



Total Store Ordering (TSO) Semantics [SPARC 1994, x86]

@ TSO architectures have write buffers
o FIFO buffers that store writes for later execution
@ Read takes value from memory if no write to that variable is buffered

@ Otherwise read value of last write in the buffer on that variable

x=y=0 Mem
Thread 1l ————— _ X
Thread 1 Thread 2 pe—c w(x,1)

a:x=1 p:y=1

b:if(y == 0){ q:if(x ==0){ Thread 7 ———— y

c: crit.sect.1 r: crit.sect.2 1
pc=r

d:} s:}

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 5/33



Total Store Ordering (TSO) Semantics [SPARC 1994, x86]

@ TSO architectures have write buffers
o FIFO buffers that store writes for later execution
@ Read takes value from memory if no write to that variable is buffered

@ Otherwise read value of last write in the buffer on that variable

x=y=0 Mem
Thread1 —— %
Thread 1 Thread 2 pc=c 1

a:x=1 p:y=1

b:if(y == 0){ q:if(x ==0){ Thread 7 ———— y

c: crit.sect.1 r: crit.sect.2 1
pc=r

d:} s:}

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 5/33



Total Store Ordering (TSO) Semantics [SPARC 1994, x86]

@ TSO architectures have write buffers
o FIFO buffers that store writes for later execution
@ Read takes value from memory if no write to that variable is buffered

@ Otherwise read value of last write in the buffer on that variable

oy = M
x=y=0 - \\\ em
read 1 '\\5.' X
Thread 1 Thread 2 pe—c 0 {
a:x=1 p:y=1 C\\)c_)\o
b if(y == 0){ g if(x == 0){ - \ef y
c: crit.sect.1 r: crit.sect.2 \,\’(,\)a 1
L =r
d:} s:} N\

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 5/33



Verification Required?!

Relaxed executions may lead to bad behaviour

Roland Meyer (TU-KL) Verification under Relaxed Memory Models



Verification Required?!
Relaxed executions may lead to bad behaviour

If this is the real world, why does anything work?

Roland Meyer (TU-KL) Verification under Relaxed Memory Models



Verification Required?!
Relaxed executions may lead to bad behaviour

If this is the real world, why does anything work?

Theorem [Adve, Hill 1993] If a program is data-race-free, then
SC and TSO semantics coincide.

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013

6/33



Verification Required?!
Relaxed executions may lead to bad behaviour

If this is the real world, why does anything work?

Theorem [Adve, Hill 1993] If a program is data-race-free, then
SC and TSO semantics coincide.

So, go and write data-race-free programs!

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013

6/33



Verification Required?!
Relaxed executions may lead to bad behaviour

If this is the real world, why does anything work?

Theorem [Adve, Hill 1993] If a program is data-race-free, then
SC and TSO semantics coincide.

So, go and write data-race-free programs!

Works in 90% of the cases

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 6 /33



Verification Required?!
Relaxed executions may lead to bad behaviour

If this is the real world, why does anything work?

Theorem [Adve, Hill 1993] If a program is data-race-free, then
SC and TSO semantics coincide.

So, go and write data-race-free programs!
Works in 90% of the cases

Performance-critical code has data races

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013

6/33



Verification Required?!
Relaxed executions may lead to bad behaviour

If this is the real world, why does anything work?

Theorem [Adve, Hill 1993] If a program is data-race-free, then
SC and TSO semantics coincide.

So, go and write data-race-free programs!

Works in 90% of the cases

Performance-critical code has data races

Concurrency libraries Operating systems HPC@Fraunhofer ITWM

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 6 /33



Verification Required?!
Relaxed executions may lead to bad behaviour

If this is the real world, why does anything work?

Theorem [Adve, Hill 1993] If a program is data-race-free, then
SC and TSO semantics coincide.

So, go and write data-race-free programs!
Works in 90% of the cases

Performance-critical code has data races

Concurrency libraries Operating systems HPC@Fraunhofer ITWM

This is where our verification techniques apply

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 6 /33



Outline

@ Shared Memory Concurrency
@ Sequential Consistency Semantics
@ Total Store Ordering Semantics

© Reachability

© Robustness

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 7 /33



Reachability

[Atig, Bouajjani, Burckhardt, Musuvathi, POPL'10]

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 8 /33



State Reachability Problem

Consider a memory model MM

State Reachability Problem for MM

Input: Program P and a (control + memory) state s.

Problem: Is s reachable when P is run under MM?

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013

9/33



State Reachability Problem

Consider a memory model MM

State Reachability Problem for MM
Input: Program P and a (control + memory) state s.

Problem: Is s reachable when P is run under MM?

Decidability / Complexity ?
Each thread is finite-state

@ For the SC memory model, this problem is PSPACE-complete

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 9 /33



State Reachability Problem

Consider a memory model MM

State Reachability Problem for MM
Input: Program P and a (control + memory) state s.

Problem: Is s reachable when P is run under MM?

Decidability / Complexity ?
Each thread is finite-state
@ For the SC memory model, this problem is PSPACE-complete

@ Non-trivial for relaxed memory models:

Pathstso(P) = Closuretso(Pathssc(P)) is non-regular

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013

9/33



Reachability

[Atig, Bouajjani, Burckhardt, Musuvathi, POPL'10]

Decidability:

Simulation of TSO semantics by Lossy Channel Systems

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5ee00 December 2013 10 / 33



Decidability of State Reachability for TSO

Theorem [ABBM 2010]

The state reachability problem for TSO is reducible to the
control-state reachability problem for LCS.

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[e5ee07 December 2013 11 /33



Decidability of State Reachability for TSO

Theorem [ABBM 2010]

The state reachability problem for TSO is reducible to the
control-state reachability problem for LCS.

Theorem [Abdulla, Jonsson 1993]
The control-state reachability problem for LCS is decidable.

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[e5ee07 December 2013

11 /33



Decidability of State Reachability for TSO
Theorem [ABBM 2010]

The state reachability problem for TSO is reducible to the
control-state reachability problem for LCS.

Theorem [Abdulla, Jonsson 1993]
The control-state reachability problem for LCS is decidable.

Corollary

The state reachability problem for TSO is decidable.

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5ee07 December 2013

11/ 33



From TSO to LCS 1/5

Thread 1: X:]-;y:].;XZZ;y:2;y:3;

Thread 2: f(x==2){ if(y==0){...} }

Write buffers are perfect FIFO channels

Mem

The write buffer of Thread 1

Roland Meyer (TU-KL) Verification under Relaxed Memory Models



From TSO to LCS 1/5

Thread 1: X:l;y:l;X:2;y:2;y:3;

Thread 2: f(x==2){ if(y==0){...} }

Write buffers are perfect FIFO channels

Mem
0
w(y,3) w(y,2) w(x,2) w(y,1) w(x,1)
0
The write buffer of Thread 1
y

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5ee00 December 2013

12 /33



From TSO to LCS 1/5

Thread 1: X:l;y:l;X:2;y:2;y:3;

Thread 2: f(x==2){ if(y==0){...} }

Write buffers are perfect FIFO channels

Mem
1
w(y,3) w(y,2) w(x,2) w(y,1)
0
The write buffer of Thread 1
y

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5ee00 December 2013

12 /33



From TSO to LCS 1/5

Thread 1: X:l;y:l;X:2;y:2;y:3;

Thread 2: f(x==2){ if(y==0){...} }

Write buffers are perfect FIFO channels

Mem
1
X
w(y,3) w(y,2) w(x,2)
1
The write buffer of Thread 1
y

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5ee00 December 2013

12 /33



From TSO to LCS 1/5

Thread 1: X:l;y:l;X:2;y:2;y:3;

Thread 2: f(x==2){ if(y==0){...} }

Write buffers are perfect FIFO channels

Mem
2
X
w(y,3) w(y,2)
1
The write buffer of Thread 1
y

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5ee00 December 2013

12 /33



From TSO to LCS 1/5

Thread 1: x=1y=1x=2,y=2;,y=3;

Thread 2: if(x==2){ if(y==0){...} }

Write buffers are perfect FIFO channels

Mem
2
X
w(y,3) w(y,2)
1
The write buffer of Thread 1
y

Thread 2 reads x = 2

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5 e December 2013

12 /33



From TSO to LCS 1/5

Thread 1: x=1Ly=1 x=2,y=2;,y=3;

Thread 2: f(x==2){ if(y==0){...} }

Write buffers are perfect FIFO channels

Mem
2
X
w(y,3) w(y,2)
1
The write buffer of Thread 1
y

Thread 2 deadlocks asy = 1

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5 e December 2013

12 /33



From TSO to LCS 2/5

Thread 1: X:l;y:l;xzz;yzz;y:3;

Thread 2: f(x==2){ if(y==0){...} }

@ Write buffers made for batch processing
@ Batch processing is similar to lossiness
@ So assume write buffers are lossy FIFO channels

Mem

w(y,3) w(y,2) w(x,2) w(y,1) w(x,1)

The write buffer of Thread 1

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5ee00 December 2013

13 / 33



From TSO to LCS 2/5

Thread 1: X:l;y:l;xzz;yzz;y:3;

Thread 2: f(x==2){ if(y==0){...} }

@ Write buffers made for batch processing
@ Batch processing is similar to lossiness

@ So assume write buffers are lossy FIFO channels

Mem
0
w(y,3) w(y,2) w(x, 2)% w(x,1)
0

The write buffer of Thread 1

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5ee00 December 2013

13 / 33



From TSO to LCS 2/5

Thread 1: X:l;y:l;xzz;yzz;y:3;

Thread 2: f(x==2){ if(y==0){...} }

@ Write buffers made for batch processing
@ Batch processing is similar to lossiness
@ So assume write buffers are lossy FIFO channels

Mem

w(y,3) w(y,2) w(x,2) w(E{l)

The write buffer of Thread 1

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5ee00 December 2013

13 / 33



From TSO to LCS 2/5

Thread 1: X:l;y:l;xzz;yzz;yza;

Thread 2: f(x==2){ if(y==0){...} }

@ Write buffers made for batch processing
@ Batch processing is similar to lossiness
@ So assume write buffers are lossy FIFO channels

Mem

w(y, 3) w(y,2) w(3(l)

The write buffer of Thread 1

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5ee00 December 2013

13 / 33



From TSO to LCS 2/5
Thread 1: x=1y=1,x=2,y=2; y=3;

Thread 2: f(x==2){ if(y==0){...} }

@ Write buffers made for batch processing
@ Batch processing is similar to lossiness

@ So assume write buffers are lossy FIFO channels

Mem
2
X
w(y,3) w(y,2) w(y(1)
0
The write buffer of Thread 1
y
Thread 2 reads x = 2
Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5ee0 December 2013

13 / 33



From TSO to LCS 2/5

Thread 1: x=1Ly=1x=2,y=2,y=3;

Thread 2: if(x==2){ if(y==0){...}

o Write buffers made for batch processing
@ Batch processing is similar to lossiness

@ So assume write buffers are lossy FIFO channels

w(y, 3) w(y,2) w(3(l)

The write buffer of Thread 1

Thread 2 readsy = 0

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | \/{ei5eel7

}

Mem

December 2013

13 / 33



From TSO to LCS 2/5

Thread 1: X:l;y:l;xzz;y:2;y:3;

Thread 2: if(x==2){ if(y==0){...}

@ Write buffers made for batch processing
@ Batch processing is similar to lossiness

@ So assume write buffers are lossy FIFO channels

w(y,3) w(y,2) w(y(1)

The write buffer of Thread 1

This is wrong! Lost the effect of w(y, 1).

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | \V/[ei5eel

Mem

December 2013

13 / 33



From TSO to LCS 3/5

TSO buffer = perfect FIFO channel

w(y,3) w(y,2) w(x,2) w(y,1) w(x,1)

Channel = sequence of memory states + lossiness

Roland Meyer (TU-KL) Verification under Relaxed Memory Models

Moscow

Mem

December 2013

14 / 33



From TSO to LCS 3/5

M
TSO buffer = perfect FIFO channel em
0
w(y,3) w(y,2) w(x,2) w(y,1) w(x,1)
0
y
Channel = sequence of memory states + lossiness
Mem
0
x=2 x=2 x=2 1 1 x
y=3 y=2 =1 1 0
0

Lossiness = unobservable memory states

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[e5ee07 December 2013

14 / 33



From TSO to LCS 3/5

M
TSO buffer = perfect FIFO channel em
0
w(y,3) w(y,2) w(x,2) w(y,1) w(x,1)
0
y
Channel = sequence of memory states + lossiness
Mem
0
x=2 x=2 x=2 = x=1 x
y=3 y=2 y=1 /=N y=0
0

Lossiness = unobservable memory states
Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[e5ee07 December 2013 14 / 33



From TSO to LCS 3/5

TSO buffer = perfect FIFO channel

w(y,3) w(y,2) w(x,2) w(y,1) w(x,1)

Channel = sequence of memory states + lossiness

Lossiness = unobservable memory states
Roland Meyer (TU-KL) Verification under Relaxed Memory Models

Moscow

Mem

December 2013

14 / 33



From TSO to LCS 3/5

TSO buffer = perfect FIFO channel

w(y,3) w(y,2) w(x,2) w(y,1)

Channel = sequence of memory states + lossiness

Lossiness = unobservable memory states

Roland Meyer (TU-KL) Verification under Relaxed Memory Models

Moscow

Mem

December 2013

14 / 33



From TSO to LCS 3/5

TSO buffer = perfect FIFO channel

w(y,3) w(y,2) w(x,2) w(y,1)

Channel = sequence of memory states + lossiness

Lossiness = unobservable memory states
Roland Meyer (TU-KL) Verification under Relaxed Memory Models

Moscow

Mem

December 2013

14 / 33



From TSO to LCS 3/5

TSO buffer = perfect FIFO channel

w(y, 3) w(y,2) w(x,2)

Channel = sequence of memory states + lossiness

Lossiness = unobservable memory states
Roland Meyer (TU-KL) Verification under Relaxed Memory Models

Moscow

Mem

December 2013

14 / 33



From TSO to LCS 3/5

TSO buffer = perfect FIFO channel

w(y,3) w(y,2)

Channel = sequence of memory states + lossiness

Lossiness = unobservable memory states

Roland Meyer (TU-KL) Verification under Relaxed Memory Models

Moscow

Mem

December 2013

14 / 33



From TSO to LCS 4/5

Thread — — Memory

o Write: Compute a new memory state; send it to the channel

@ Read: Check the channel/memory

o Memory update: Receive a state; copy it to the memory

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[e5 el December 2013 15 / 33



From TSO to LCS 4/5

Problem: Interference between threads?

Thread — — Memory

o Write: Compute a new memory state; send it to the channel

@ Read: Check the channel/memory

o Memory update: Receive a state; copy it to the memory

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[e5 el December 2013 15 / 33



From TSO to LCS 4/5

Problem: Interference between threads?

Each thread guesses writes of other threads

Thread — — Memory

o Write: Compute a new memory state; send it to the channel

@ Read: Check the channel/memory

Memory update: Receive a state; copy it to the memory

Guessed Write: Send the guessed state to the channel

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[e5 el December 2013

15 / 33



From TSO to LCS 4/5

Problem: Interference between threads?

Each thread guesses writes of other threads

Thread — — Memory

o Write: Compute a new memory state; send it to the channel
@ Read: Check the channel/memory
o Memory update: Receive a state; copy it to the memory

@ Guessed Write: Send the guessed state to the channel

Check that all threads agree on their guesses

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[e5 <0 December 2013 15 / 33



From TSO to LCS 4/5

Problem: Interference between threads?

Each thread guesses writes of other threads

Thread — — Memory

o Write: Compute a new memory state; send it to the channel

@ Read: Check the channel/memory

o Memory update: Receive a state; copy it to the memory

@ Guessed Write: Send the guessed state to the channel
Check that all threads agree on their guesses

Synchronization of the LCS over send actions

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[e5 <0 December 2013

15 / 33



From TSO to LCS 5/5

Theorem [ABBM 2010]

The state reachability problem for TSO is reducible to the
control-state reachability problem for LCS.

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[e5ee07 December 2013 16 / 33



State Reachability: Conclusion

@ Decidable for TSO (and beyond)
@ But it is a hard problem — non-primitive recursive

@ However, it is possible to have efficient analysis techniques

Abstraction-based techniques:

e.g., [Kuperstein, Vechev, Yahav, PLDI'11]

Symbolic techniques:

[Abdulla, Atig, Chen, Leonardson, Rezine, TACAS'12]
[Linden, Wolper, SPIN’10°'11]

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5ee07 December 2013 17 / 33



Robustness

[Bouajjani, M., M&hlmann, ICALP'11]
[Bouajjani, Derevenetc, M., ESOP'13]

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5ee00 December 2013 18 / 33



Robustness against TSO

Idea of robustness:

TSO behavior that deviates from SC is a programming error

Roland Meyer (TU-KL) Verification under Relaxed Memory Models



Robustness against TSO

Idea of robustness:
TSO behavior that deviates from SC is a programming error

What is the notion of behavior?

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[e5 <07 December 2013 19 / 33



Robustness against TSO

Idea of robustness:

TSO behavior that deviates from SC is a programming error

What is the notion of behavior?

Trace Robustness:

TSO- and SC-traces are the same [Shasha, Snir'88]

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5 el December 2013 19 / 33



Robustness against TSO

Idea of robustness:

TSO behavior that deviates from SC is a programming error

What is the notion of behavior?

Trace Robustness:

TSO- and SC-traces are the same [Shasha, Snir'88]

Good: Allows for quite relaxed behaviors

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5 el December 2013

19 / 33



Robustness against TSO

Idea of robustness:

TSO behavior that deviates from SC is a programming error

What is the notion of behavior?

Trace Robustness:

TSO- and SC-traces are the same [Shasha, Snir'88]

Good: Allows for quite relaxed behaviors

Very Good: Only PSPACE-complete

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5 el December 2013

19 / 33



Traces 1/2

Computation = sequence of actions as seen by memory

x=y=0
Thread 1 Thread 2
a:x=1 ry=1
b:if(y ==0){ sif(x == 0){
c: crit.sect.1 crit. sect. 2
d:} 2}

Roland Meyer (TU-KL)

Thread 1

pc=a

Thread 2
pc=p

Verification under Relaxed Memory Models

Moscow

December 2013

Mem

20 / 33



Traces 1/2

Computation = sequence of actions as seen by memory

x=y=0
Thread 1 Thread 2
a:x=1 ry=1
b:if(y ==0){ sif(x == 0){
c: crit.sect.1 crit. sect. 2
d:} 2}

Roland Meyer (TU-KL)

Thread 1
pc=0>b

Thread 2
pc=p

Verification under Relaxed Memory Models

Moscow

Mem

w(x,1)

December 2013 20 /33



Traces 1/2

Computation = sequence of actions as seen by memory

x=y=0
Thread 1
Thread 1 Thread 2 pc=c
a:x=1 p:y=1
b:if(y == 0){ q: if(x == 0){ Thread 2
c: crit.sect.1 r: crit.sect.2 c—
d:} s:} pe=p
r(y,0)
Roland Meyer (TU-KL) Verification under Relaxed Memory Models

Moscow

Mem

w(x,1)

December 2013 20 /33



Traces 1/2

Computation = sequence of actions as seen by memory

x=y=0
Thread 1
Thread 1 Thread 2 pc=c
a:x=1 p:y=1
b:if(y == 0){ q: if(x == 0){ Thread 2
c: crit.sect.1 r: crit.sect.2 c—
d:} s:} pe=4
r(y,0)
Roland Meyer (TU-KL) Verification under Relaxed Memory Models

Moscow

w(x,1)

w(y,1)

December 2013

Mem

20 / 33



Traces 1/2

Computation = sequence of actions as seen by memory

x=y=0 Mem

Thread 1 - X
Thread 1 Thread 2 pe—c w(x,1) 0

a:x=1 p:y=1

b:if(y == 0){ q: if(x == 0){ Thread 2 —mm——— y

c: crit.sect.1 r: crit.sect.2 1
pc=4q —_—

d:} s:}

r(y7 0) : W(y7 1)
Roland Meyer (TU-KL) Verification under Relaxed Memory Models

Moscow December 2013 20 /33



Traces 1/2

Computation = sequence of actions as seen by memory

x=y=0
Thread 1
Thread 1 Thread 2 pc=c
a:x=1 ry=1
b:if(y == 0){ s if(x == 0){ Thread 2
c: crit.sect.1 crit. sect. 2
pc=r
d:} 2}

Roland Meyer (TU-KL)

r(y,0) - w(y,1) - r(x,0)

Verification under Relaxed Memory Models

Moscow

Mem

w(x,1)

December 2013 20 /33



Traces 1/2

Computation = sequence of actions as seen by memory

x=y=0 Mem
Thread 1 %
Thread 1 Thread 2 pc=c 1

a:x=1 p:y=1

b:if(y == 0){ q: if(x == 0){ Thread 2 —mm————— y

c: crit.sect.1 r: crit.sect.2 1
pc=r

d:} s:}

r(y,0) - w(y,1) - r(x,0) - w(x, 1)

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[e5ee0n7 December 2013 20 /33



Traces 1/2

Computation = sequence of actions as seen by memory

x=y=0 Mem
Thread 1 %
Thread 1 Thread 2 pc=c 1

a:x=1 p:y=1

b:if(y == 0){ q: if(x == 0){ Thread 2 —mm————— y

c: crit.sect.1 r: crit.sect.2 1
pc=r

d:} s:}

— T

r(y,0) - w(y,1) - r(x,0) - w(x, 1)

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[e5ee0n7 December 2013 20 /33



Traces 2/2

Traces abstract computations to happens before dependencies

Trace(r(y,0) - w(y,1) - r(x,0)- w(x,1))

Roland Meyer (TU-KL) Verification under Relaxed Memory Models



Traces 2/2

Traces abstract computations to happens before dependencies

@ Program order: Order of actions issued by a thread

Trace(r(y,0) - w(y,1) - r(x,0)- w(x,1))
w(x, 1) l l w(y,1)

r(y,0) r(x,0)

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[e5ee07 December 2013

21/33



Traces 2/2

Traces abstract computations to happens before dependencies

@ Program order: Order of actions issued by a thread

@ Store order: Order of writes to a variable

Trace(r(y,0) - w(y,1) - r(x,0)- w(x,1))
w(x, 1) l l w(y,1)

r(y,0) r(x,0)

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[e5ee07 December 2013

21/33



Traces 2/2

Traces abstract computations to happens before dependencies

@ Program order: Order of actions issued by a thread
@ Store order: Order of writes to a variable

@ Source relation: write is source of read.

Trace(r(y,0) - w(y,1) - r(x,0)- w(x,1))
w(x, 1) l l w(y,1)

r(y,0) r(x,0)

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[e5ee07 December 2013

21/33



Traces 2/2

Traces abstract computations to happens before dependencies

Program order: Order of actions issued by a thread

Store order: Order of writes to a variable

@ Source relation: write is source of read.

o Conflict relation: read is overwritten by write.

Trace(r(y,0) - w(y,1) - r(x,0)- w(x,1))
w(x, 1) w(y,1)
r(y,0) [ ] r(x,0)

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[e5ee07 December 2013

21/33



Trace Robustness Problem

Consider a memory model MM
Trace Robustness Problem against MM

Input: Program P.

Problem: Does Traces(P) C Tracessc(P) hold?

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5ee07 December 2013

22/33



Trace Robustness Problem

Consider a memory model MM
Trace Robustness Problem against MM

Input: Program P.

Problem: Does Traces(P) C Tracessc(P) hold?

Decidability / Complexity ?

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5ee07 December 2013

22/33



Trace Robustness Problem

Consider a memory model MM
Trace Robustness Problem against MM

Input: Program P.

Problem: Does Traces(P) C Tracessc(P) hold?

Decidability / Complexity ?
Proof method
Theorem [Shasha, Snir 1988]

Program P is robust against MM iff all traces in Tracesp(P)
are acyclic.

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5ee07 December 2013

22/33



Trace Robustness Problem

Consider a memory model MM
Trace Robustness Problem against MM

Input: Program P.

Problem: Does Traces(P) C Tracessc(P) hold?

Decidability / Complexity ?
Proof method

Theorem [Shasha, Snir 1988]

Program P is robust against MM iff all traces in Tracesp(P)
are acyclic.

Shasha and Snir do not give an algorithm to find cyclic traces!

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[e5ee0 December 2013

22/33



Robustness

[Bouajjani, M., M&hlmann, ICALP'11]
[Bouajjani, Derevenetc, M., ESOP'13]

Upper Bound:

Combinatorics

From Robustness to SC Reachability

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5ee00 December 2013

23 /33



Deciding Robustness

Robust

Computations

Roland Meyer (TU-KL) Verification under Relaxed Memory Models



Deciding Robustness

Robust

Computations

Understand shape of minimal violations

Roland Meyer (TU-KL) Verification under Relaxed Memory Models



Deciding Robustness

Robust

Computations

Understand shape of minimal violations

Check whether computation of this shape exists

Roland Meyer (TU-KL) Verification under Relaxed Memory Models



Robustness

[Bouajjani, M., M&hlmann, ICALP'11]
[Bouajjani, Derevenetc, M., ESOP'13]

Upper Bound:

Combinatorics — Locality and Attacks

From Robustness to SC Reachability

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5ee00 December 2013

25 /33



Locality of Robustness 1/3

Goal: Locality

We can restrict ourselves to violations where only one thread
reorders its actions.

Proof tool: Minimal violations

Number of inversions (out-of-program-order placements) minimal
among all violating computations

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5ee07 December 2013 26 / 33



Locality of Robustness 2/3

Consider minimal violation «.- b - 8- a -~ where b has overtaken a

Roland Meyer (TU-KL) Verification under Relaxed Memory Models



Locality of Robustness 2/3

Consider minimal violation «.- b - 8- a -~ where b has overtaken a

Then b and a have happens before path through

Roland Meyer (TU-KL) Verification under Relaxed Memory Models



Locality of Robustness 2/3

Consider minimal violation «.- b - 8- a -~ where b has overtaken a
Then b and a have happens before path through
Subword by ... by with

bi —>srcsstjer bix1  or  bi =¥ bij

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[e5 e December 2013

27 /33



Locality of Robustness 2/3

Consider minimal violation «.- b - 8- a -~ where b has overtaken a
Then b and a have happens before path through
Subword by ... by with

b; —7src/st/cf bit1 or b; _>;_ bit1
w(x,1) w(y,1)
]><1 I’(y,O)'W(y,l)'r(X,O)'W(X,l)
r(y,0) r(x,0) NG
Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[e5 e December 2013

27 /33



Locality of Robustness 3/3

Theorem (Locality) [BMM 2011]

In a minimal violation, only a single thread uses its buffer.

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5ee07 December 2013 28 /33



Locality of Robustness 3/3

Theorem (Locality) [BMM 2011]

In a minimal violation, only a single thread uses its buffer.

Proof sketch

Pick last writes that are overtaken in two threads t; and t;:

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5ee07 December 2013

28 / 33



Locality of Robustness 3/3

Theorem (Locality) [BMM 2011]

In a minimal violation, only a single thread uses its buffer.

Proof sketch

Pick last writes that are overtaken in two threads t; and t;:
Case 1: No interference

I wj ri w;

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[e5 el December 2013

28 / 33



Locality of Robustness 3/3

Theorem (Locality) [BMM 2011]

In a minimal violation, only a single thread uses its buffer.

Proof sketch

Pick last writes that are overtaken in two threads t; and t;:
Case 1: No interference

I wj ri w;

Lemma: happens before cycle r; —/, w; —}

pli

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[e5ee07 December 2013

28 / 33



Locality of Robustness 3/3

Theorem (Locality) [BMM 2011]

In a minimal violation, only a single thread uses its buffer.

Proof sketch

Pick last writes that are overtaken in two threads t; and t;:
Case 1: No interference

I wj ri w;

Lemma: happens before cycle rj =, w; — rj
Read r; not involved, delete everything from r; on

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[e5ee07 December 2013

28 / 33



Locality of Robustness 3/3

Theorem (Locality) [BMM 2011]

In a minimal violation, only a single thread uses its buffer.

Proof sketch

Pick last writes that are overtaken in two threads t; and t;:
Case 1: No interference

] wj w;

Lemma: happens before cycle rj =, w; — rj
Read r; not involved, delete everything from r; on

Saves a reordering, contradiction to minimality

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[e5 e December 2013

28 / 33



Locality of Robustness 3/3

Theorem (Locality) [BMM 2011]
In a minimal violation, only a single thread uses its buffer.

Proof sketch

Pick last writes that are overtaken in two threads t; and t;:
Case 2: Overlap

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5ee07 December 2013

28 / 33



Locality of Robustness 3/3

Theorem (Locality) [BMM 2011]
In a minimal violation, only a single thread uses its buffer.

Proof sketch

Pick last writes that are overtaken in two threads t; and t;:
Case 2: Overlap

Argumentation similar, delete again r;

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5ee07 December 2013

28 / 33



Locality of Robustness 3/3
Theorem (Locality) [BMM 2011]
In a minimal violation, only a single thread uses its buffer.

Proof sketch

Pick last writes that are overtaken in two threads t; and t;:
Case 3: Interference

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5ee07 December 2013

28 / 33



Locality of Robustness 3/3
Theorem (Locality) [BMM 2011]

In a minimal violation, only a single thread uses its buffer.

Proof sketch

Pick last writes that are overtaken in two threads t; and t;:
Case 3: Interference

I ri wj w;

. +
Lemma: happens before cycle rj —,, w; =}

p i

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5ee07 December 2013

28 / 33



Locality of Robustness 3/3

Theorem (Locality) [BMM 2011]

In a minimal violation, only a single thread uses its buffer.

Proof sketch

Pick last writes that are overtaken in two threads t; and t;:
Case 3: Interference

j i wj Wi
: G
Lemma: happens before cycle r; —,, w; = r;
Only thread t; may contribute, delete rest
Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5ee07 December 2013

28 / 33



Locality of Robustness 3/3
Theorem (Locality) [BMM 2011]

In a minimal violation, only a single thread uses its buffer.

Proof sketch

Pick last writes that are overtaken in two threads t; and t;:
Case 3: Interference

Lemma: happens before cycle r; %ﬁb w; %;“ r
Only thread t; may contribute, delete rest

Lemma: happens before cycle r; —>;rb w; —+

p i

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[e5ee07 December 2013

28 / 33



Locality of Robustness 3/3
Theorem (Locality) [BMM 2011]

In a minimal violation, only a single thread uses its buffer.

Proof sketch

Pick last writes that are overtaken in two threads t; and t;:
Case 3: Interference

. N N o
Lemma: happens before cycle r; —,, w; —;

Only thread t; may contribute, delete rest
Lemma: happens before cycle r; —>7{b w; —>;,L r
Read rj not on this cycle, delete it, contradiction

j

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5ee07 December 2013

28 / 33



Characterization of Robustness via Attacks 1/2

Reformulate Robustness

absence of feasible attacks

Roland Meyer (TU-KL) Verification under Relaxed Memory Models



Characterization of Robustness via Attacks 1/2

Reformulate Robustness

absence of feasible attacks

If P is not robust, there are these violation:

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5 e December 2013

29 / 33



Characterization of Robustness via Attacks 1/2

Reformulate Robustness

absence of feasible attacks

If P is not robust, there are these violation:

Attacker The thread that uses its buffer: only one by locality

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5 e December 2013

29 / 33



Characterization of Robustness via Attacks 1/2

Reformulate Robustness

absence of feasible attacks

If P is not robust, there are these violation:

Attacker The thread that uses its buffer: only one by locality

- : + +
Helpers Remaining threads close cycle: r —,, ww — ] r

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5 e December 2013

29 / 33



Characterization of Robustness via Attacks 1/2

Reformulate Robustness

absence of feasible attacks

If P is not robust, there are these violation:

Attacker The thread that uses its buffer: only one by locality

- : + +
Helpers Remaining threads close cycle: r —,, ww — ] r

r(y,0) - w(y,1)-r(x,0) w(x,1)

—hb

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5 e December 2013

29 / 33



Characterization of Robustness via Attacks 2/2

@ Fix thread, write instruction, read instruction

@ Given these parameters, find a violation as above

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5ee0 December 2013 30/ 33



Characterization of Robustness via Attacks 2/2

@ Fix thread, write instruction, read instruction

@ Given these parameters, find a violation as above

Attack
@ An attack is a triple A = (thread, write, read)

@ A TSO witness for attack A is a computation as above:

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5ee0 December 2013

30 /33



Characterization of Robustness via Attacks 2/2

@ Fix thread, write instruction, read instruction

@ Given these parameters, find a violation as above

Attack
@ An attack is a triple A = (thread, write, read)

@ A TSO witness for attack A is a computation as above:

o p B w

Theorem [BDM’13]

Program P is robust if and only if no attack has a TSO witness.

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[e5 e December 2013

30 /33



Characterization of Robustness via Attacks 2/2

@ Fix thread, write instruction, read instruction

@ Given these parameters, find a violation as above

Attack
@ An attack is a triple A = (thread, write, read)

@ A TSO witness for attack A is a computation as above:

o p B w

Theorem [BDM’13]

Program P is robust if and only if no attack has a TSO witness.

The number of attacks is quadratic in the size of P.

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[e5 <0 December 2013

30 /33



Robustness

[Bouajjani, M., M&hlmann, ICALP'11]
[Bouajjani, Derevenetc, M., ESOP'13]

Upper Bound:

Combinatorics

From Robustness to SC Reachability

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5ee00 December 2013

31/33



Finding TSO Witnesses with SC Reachability

TSO witnesses for attack A considerably restrict TSO behavior,

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[e5ee0 December 2013 32/33



Finding TSO Witnesses with SC Reachability

TSO witnesses for attack A considerably restrict TSO behavior,
enough to find TSO witnesses with SC reachability

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[e5ee0 December 2013 32/33



Finding TSO Witnesses with SC Reachability

TSO witnesses for attack A considerably restrict TSO behavior,
enough to find TSO witnesses with SC reachability

Let attacker execute under SC

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5ee0) December 2013

32/33



Finding TSO Witnesses with SC Reachability

TSO witnesses for attack A considerably restrict TSO behavior,
enough to find TSO witnesses with SC reachability

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[c5ee0) December 2013

32/33



Finding TSO Witnesses with SC Reachability

TSO witnesses for attack A considerably restrict TSO behavior,
enough to find TSO witnesses with SC reachability

o p 8 w

Let attacker execute under SC

Problem Writes may conflict with helper reads

W-r r A
o p LW 3
Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[e5ee07 December 2013

32/ 33



Finding TSO Witnesses with SC Reachability

TSO witnesses for attack A considerably restrict TSO behavior,
enough to find TSO witnesses with SC reachability

o p 8 w

Let attacker execute under SC
Problem Writes may conflict with helper reads
Solution Hide them from other threads

Wigc * r r
o P Wioc /j’

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[e5ee07 December 2013

32/ 33



Finding TSO Witnesses with SC Reachability

TSO witnesses for attack A considerably restrict TSO behavior,
enough to find TSO witnesses with SC reachability

o p 8 w

Let attacker execute under SC
Problem Writes may conflict with helper reads
Solution Hide them from other threads

Wigc * r r
o P Wioc /j’

Theorem [BDM’13]

Attack A has a TSO witness iff Pa reaches goal state under SC.

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[e5ee0 December 2013

32/ 33



Trace Robustness: Conclusion

@ Decidable for TSO (and beyond)

@ Is an easy problem — PSPACE-complete

Locality: only one thread uses the buffer

Analysis parallelizable
@ Monitoring techniques:

e.g., [Burckhardt, Musuvathi CAV'08, Sen et al. TACAS'11]

Static analysis:
[Shasha Snir TOPLAS'88, Alglave, Maranget CAV'11]

@ Semantics:
[Owens ECOOP’10]

Roland Meyer (TU-KL) Verification under Relaxed Memory Models | 1\Y[e5ee07 December 2013 33 /33



	Shared Memory Concurrency
	Sequential Consistency Semantics
	Total Store Ordering Semantics

	Reachability
	Robustness

