
Verification of Concurrent Programs
under Relaxed Memory Models

Moscow State University

Roland Meyer

Technische Universität Kaiserslautern

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 1 / 33

Concurrent Programs with Shared Memory

Finite number of shared variables {x , y , x1, . . .}
Finite data domain {d , d0, d1, . . .}
Finite number of finite-control threads T1, . . . ,Tn with operations:

w(x , d), r(x , d)

x = y = 0

Thread 1

a : x = 1

b : if (y == 0){
c : crit. sect. 1

d : }

Thread 2

p : y = 1

q : if (x == 0){
r : crit. sect. 2

s : }

Dekker’s mutual exclusion protocol.

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 2 / 33

Sequential Consistency (SC) Semantics [Lamport 1979]

Threads directly write to and read from memory

Classical interleaving semantics

I Computations of different threads are shuffled

I Program order is preserved for each thread

x = y = 0

Thread 1

a : x = 1

b : if (y == 0){
c : crit. sect. 1

d : }

Thread 2

p : y = 1

q : if (x == 0){
r : crit. sect. 2

s : }

Thread 1

pc = a

Thread 2

pc = p

Mem

x

0

y

0

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 3 / 33

Sequential Consistency (SC) Semantics [Lamport 1979]

Threads directly write to and read from memory

Classical interleaving semantics

I Computations of different threads are shuffled

I Program order is preserved for each thread

x = y = 0

Thread 1

a : x = 1

b : if (y == 0){
c : crit. sect. 1

d : }

Thread 2

p : y = 1

q : if (x == 0){
r : crit. sect. 2

s : }

Thread 1

pc = b

Thread 2

pc = p

Mem

x

1

y

0

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 3 / 33

Sequential Consistency (SC) Semantics [Lamport 1979]

Threads directly write to and read from memory

Classical interleaving semantics

I Computations of different threads are shuffled

I Program order is preserved for each thread

x = y = 0

Thread 1

a : x = 1

b : if (y == 0){
c : crit. sect. 1

d : }

Thread 2

p : y = 1

q : if (x == 0){
r : crit. sect. 2

s : }

Thread 1

pc = c

Thread 2

pc = p

Mem

x

1

y

0

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 3 / 33

Sequential Consistency (SC) Semantics [Lamport 1979]

Threads directly write to and read from memory

Classical interleaving semantics

I Computations of different threads are shuffled

I Program order is preserved for each thread

x = y = 0

Thread 1

a : x = 1

b : if (y == 0){
c : crit. sect. 1

d : }

Thread 2

p : y = 1

q : if (x == 0){
r : crit. sect. 2

s : }

Thread 1

pc = c

Thread 2

pc = q

Mem

x

1

y

1

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 3 / 33

Sequential Consistency (SC) Semantics [Lamport 1979]

Threads directly write to and read from memory

Classical interleaving semantics

I Computations of different threads are shuffled

I Program order is preserved for each thread

x = y = 0

Thread 1

a : x = 1

b : if (y == 0){
c : crit. sect. 1

d : }

Thread 2

p : y = 1

q : if (x == 0){
r : crit. sect. 2

s : }

Thread 1

pc = c

Thread 2

pc = q

Mem

x

1

y

1

Mu
tua

l ex
clu

sio
n h

old
s!

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 3 / 33

Total Store Ordering (TSO) Semantics [SPARC 1994, x86]

Sequential Consistency forbids compiler and hardware optimizations

Hence is not implemented by any processor

Processors have various buffers to reduce latency of memory accesses

Behavior captured by relaxed memory models

Here: Total Store Ordering (TSO) memory model

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 4 / 33

Total Store Ordering (TSO) Semantics [SPARC 1994, x86]

TSO architectures have write buffers

FIFO buffers that store writes for later execution

Read takes value from memory if no write to that variable is buffered

Otherwise read value of last write in the buffer on that variable

x = y = 0

Thread 1

a : x = 1

b : if (y == 0){
c : crit. sect. 1

d : }

Thread 2

p : y = 1

q : if (x == 0){
r : crit. sect. 2

s : }

Thread 1

pc = a

Thread 2

pc = p

Mem

x

0

y

0

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 5 / 33

Total Store Ordering (TSO) Semantics [SPARC 1994, x86]

TSO architectures have write buffers

FIFO buffers that store writes for later execution

Read takes value from memory if no write to that variable is buffered

Otherwise read value of last write in the buffer on that variable

x = y = 0

Thread 1

a : x = 1

b : if (y == 0){
c : crit. sect. 1

d : }

Thread 2

p : y = 1

q : if (x == 0){
r : crit. sect. 2

s : }

Thread 1

pc = b

Thread 2

pc = p

w(x , 1)

Mem

x

0

y

0

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 5 / 33

Total Store Ordering (TSO) Semantics [SPARC 1994, x86]

TSO architectures have write buffers

FIFO buffers that store writes for later execution

Read takes value from memory if no write to that variable is buffered

Otherwise read value of last write in the buffer on that variable

x = y = 0

Thread 1

a : x = 1

b : if (y == 0){
c : crit. sect. 1

d : }

Thread 2

p : y = 1

q : if (x == 0){
r : crit. sect. 2

s : }

Thread 1

pc = c

Thread 2

pc = p

w(x , 1)

Mem

x

0

y

0

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 5 / 33

Total Store Ordering (TSO) Semantics [SPARC 1994, x86]

TSO architectures have write buffers

FIFO buffers that store writes for later execution

Read takes value from memory if no write to that variable is buffered

Otherwise read value of last write in the buffer on that variable

x = y = 0

Thread 1

a : x = 1

b : if (y == 0){
c : crit. sect. 1

d : }

Thread 2

p : y = 1

q : if (x == 0){
r : crit. sect. 2

s : }

Thread 1

pc = c

Thread 2

pc = q

w(x , 1)

w(y , 1)

Mem

x

0

y

0

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 5 / 33

Total Store Ordering (TSO) Semantics [SPARC 1994, x86]

TSO architectures have write buffers

FIFO buffers that store writes for later execution

Read takes value from memory if no write to that variable is buffered

Otherwise read value of last write in the buffer on that variable

x = y = 0

Thread 1

a : x = 1

b : if (y == 0){
c : crit. sect. 1

d : }

Thread 2

p : y = 1

q : if (x == 0){
r : crit. sect. 2

s : }

Thread 1

pc = c

Thread 2

pc = q

w(x , 1)

Mem

x

0

y

1

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 5 / 33

Total Store Ordering (TSO) Semantics [SPARC 1994, x86]

TSO architectures have write buffers

FIFO buffers that store writes for later execution

Read takes value from memory if no write to that variable is buffered

Otherwise read value of last write in the buffer on that variable

x = y = 0

Thread 1

a : x = 1

b : if (y == 0){
c : crit. sect. 1

d : }

Thread 2

p : y = 1

q : if (x == 0){
r : crit. sect. 2

s : }

Thread 1

pc = c

Thread 2

pc = r

w(x , 1)

Mem

x

0

y

1

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 5 / 33

Total Store Ordering (TSO) Semantics [SPARC 1994, x86]

TSO architectures have write buffers

FIFO buffers that store writes for later execution

Read takes value from memory if no write to that variable is buffered

Otherwise read value of last write in the buffer on that variable

x = y = 0

Thread 1

a : x = 1

b : if (y == 0){
c : crit. sect. 1

d : }

Thread 2

p : y = 1

q : if (x == 0){
r : crit. sect. 2

s : }

Thread 1

pc = c

Thread 2

pc = r

Mem

x

1

y

1

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 5 / 33

Total Store Ordering (TSO) Semantics [SPARC 1994, x86]

TSO architectures have write buffers

FIFO buffers that store writes for later execution

Read takes value from memory if no write to that variable is buffered

Otherwise read value of last write in the buffer on that variable

x = y = 0

Thread 1

a : x = 1

b : if (y == 0){
c : crit. sect. 1

d : }

Thread 2

p : y = 1

q : if (x == 0){
r : crit. sect. 2

s : }

Thread 1

pc = c

Thread 2

pc = r

Mem

x

y

1

Mu
tua

l ex
clu

sio
n f
ails

!!!

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 5 / 33

Verification Required?!

Relaxed executions may lead to bad behaviour

If this is the real world, why does anything work?

Theorem [Adve, Hill 1993] If a program is data-race-free, then
SC and TSO semantics coincide.

So, go and write data-race-free programs!

Works in 90% of the cases

Performance-critical code has data races

Concurrency libraries Operating systems HPC@Fraunhofer ITWM

This is where our verification techniques apply

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 6 / 33

Verification Required?!

Relaxed executions may lead to bad behaviour

If this is the real world, why does anything work?

Theorem [Adve, Hill 1993] If a program is data-race-free, then
SC and TSO semantics coincide.

So, go and write data-race-free programs!

Works in 90% of the cases

Performance-critical code has data races

Concurrency libraries Operating systems HPC@Fraunhofer ITWM

This is where our verification techniques apply

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 6 / 33

Verification Required?!

Relaxed executions may lead to bad behaviour

If this is the real world, why does anything work?

Theorem [Adve, Hill 1993] If a program is data-race-free, then
SC and TSO semantics coincide.

So, go and write data-race-free programs!

Works in 90% of the cases

Performance-critical code has data races

Concurrency libraries Operating systems HPC@Fraunhofer ITWM

This is where our verification techniques apply

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 6 / 33

Verification Required?!

Relaxed executions may lead to bad behaviour

If this is the real world, why does anything work?

Theorem [Adve, Hill 1993] If a program is data-race-free, then
SC and TSO semantics coincide.

So, go and write data-race-free programs!

Works in 90% of the cases

Performance-critical code has data races

Concurrency libraries Operating systems HPC@Fraunhofer ITWM

This is where our verification techniques apply

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 6 / 33

Verification Required?!

Relaxed executions may lead to bad behaviour

If this is the real world, why does anything work?

Theorem [Adve, Hill 1993] If a program is data-race-free, then
SC and TSO semantics coincide.

So, go and write data-race-free programs!

Works in 90% of the cases

Performance-critical code has data races

Concurrency libraries Operating systems HPC@Fraunhofer ITWM

This is where our verification techniques apply

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 6 / 33

Verification Required?!

Relaxed executions may lead to bad behaviour

If this is the real world, why does anything work?

Theorem [Adve, Hill 1993] If a program is data-race-free, then
SC and TSO semantics coincide.

So, go and write data-race-free programs!

Works in 90% of the cases

Performance-critical code has data races

Concurrency libraries Operating systems HPC@Fraunhofer ITWM

This is where our verification techniques apply

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 6 / 33

Verification Required?!

Relaxed executions may lead to bad behaviour

If this is the real world, why does anything work?

Theorem [Adve, Hill 1993] If a program is data-race-free, then
SC and TSO semantics coincide.

So, go and write data-race-free programs!

Works in 90% of the cases

Performance-critical code has data races

Concurrency libraries Operating systems HPC@Fraunhofer ITWM

This is where our verification techniques apply

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 6 / 33

Verification Required?!

Relaxed executions may lead to bad behaviour

If this is the real world, why does anything work?

Theorem [Adve, Hill 1993] If a program is data-race-free, then
SC and TSO semantics coincide.

So, go and write data-race-free programs!

Works in 90% of the cases

Performance-critical code has data races

Concurrency libraries Operating systems HPC@Fraunhofer ITWM

This is where our verification techniques apply

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 6 / 33

Outline

1 Shared Memory Concurrency
Sequential Consistency Semantics
Total Store Ordering Semantics

2 Reachability

3 Robustness

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 7 / 33

Reachability

[Atig, Bouajjani, Burckhardt, Musuvathi, POPL’10]

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 8 / 33

State Reachability Problem

Consider a memory model MM

State Reachability Problem for MM

Input: Program P and a (control + memory) state s.

Problem: Is s reachable when P is run under MM?

Decidability / Complexity ?

Each thread is finite-state

For the SC memory model, this problem is PSPACE-complete

Non-trivial for relaxed memory models:

PathsTSO(P) = ClosureTSO(PathsSC (P)) is non-regular

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 9 / 33

State Reachability Problem

Consider a memory model MM

State Reachability Problem for MM

Input: Program P and a (control + memory) state s.

Problem: Is s reachable when P is run under MM?

Decidability / Complexity ?

Each thread is finite-state

For the SC memory model, this problem is PSPACE-complete

Non-trivial for relaxed memory models:

PathsTSO(P) = ClosureTSO(PathsSC (P)) is non-regular

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 9 / 33

State Reachability Problem

Consider a memory model MM

State Reachability Problem for MM

Input: Program P and a (control + memory) state s.

Problem: Is s reachable when P is run under MM?

Decidability / Complexity ?

Each thread is finite-state

For the SC memory model, this problem is PSPACE-complete

Non-trivial for relaxed memory models:

PathsTSO(P) = ClosureTSO(PathsSC (P)) is non-regular

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 9 / 33

Reachability

[Atig, Bouajjani, Burckhardt, Musuvathi, POPL’10]

Decidability:

Simulation of TSO semantics by Lossy Channel Systems

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 10 / 33

Decidability of State Reachability for TSO

Theorem [ABBM 2010]

The state reachability problem for TSO is reducible to the
control-state reachability problem for LCS.

Theorem [Abdulla, Jonsson 1993]

The control-state reachability problem for LCS is decidable.

Corollary

The state reachability problem for TSO is decidable.

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 11 / 33

Decidability of State Reachability for TSO

Theorem [ABBM 2010]

The state reachability problem for TSO is reducible to the
control-state reachability problem for LCS.

Theorem [Abdulla, Jonsson 1993]

The control-state reachability problem for LCS is decidable.

Corollary

The state reachability problem for TSO is decidable.

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 11 / 33

Decidability of State Reachability for TSO

Theorem [ABBM 2010]

The state reachability problem for TSO is reducible to the
control-state reachability problem for LCS.

Theorem [Abdulla, Jonsson 1993]

The control-state reachability problem for LCS is decidable.

Corollary

The state reachability problem for TSO is decidable.

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 11 / 33

From TSO to LCS 1/5

Thread 1: x = 1; y = 1; x = 2; y = 2; y = 3;

Thread 2: if (x == 2) { if (y == 0) { . . . } }

Write buffers are perfect FIFO channels

The write buffer of Thread 1

x

Mem

y

0

0

0

0

w(x, 1)w(y, 1)w(x, 2)w(y, 2)w(y, 3)

0

1

w(y, 1)w(x, 2)w(y, 2)w(y, 3)

1

1

w(x, 2)w(y, 2)w(y, 3)

1

2

w(y, 2)w(y, 3)

1

2

w(y, 2)w(y, 3)

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 12 / 33

From TSO to LCS 1/5

Thread 1: x = 1; y = 1; x = 2; y = 2; y = 3;

Thread 2: if (x == 2) { if (y == 0) { . . . } }

Write buffers are perfect FIFO channels

The write buffer of Thread 1

x

Mem

y

0

0

0

0

w(x, 1)w(y, 1)w(x, 2)w(y, 2)w(y, 3)

0

1

w(y, 1)w(x, 2)w(y, 2)w(y, 3)

1

1

w(x, 2)w(y, 2)w(y, 3)

1

2

w(y, 2)w(y, 3)

1

2

w(y, 2)w(y, 3)

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 12 / 33

From TSO to LCS 1/5

Thread 1: x = 1; y = 1; x = 2; y = 2; y = 3;

Thread 2: if (x == 2) { if (y == 0) { . . . } }

Write buffers are perfect FIFO channels

The write buffer of Thread 1

x

Mem

y

0

0

0

0

w(x, 1)w(y, 1)w(x, 2)w(y, 2)w(y, 3)

0

1

w(y, 1)w(x, 2)w(y, 2)w(y, 3)

1

1

w(x, 2)w(y, 2)w(y, 3)

1

2

w(y, 2)w(y, 3)

1

2

w(y, 2)w(y, 3)

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 12 / 33

From TSO to LCS 1/5

Thread 1: x = 1; y = 1; x = 2; y = 2; y = 3;

Thread 2: if (x == 2) { if (y == 0) { . . . } }

Write buffers are perfect FIFO channels

The write buffer of Thread 1

x

Mem

y

0

0

0

0

w(x, 1)w(y, 1)w(x, 2)w(y, 2)w(y, 3)

0

1

w(y, 1)w(x, 2)w(y, 2)w(y, 3)

1

1

w(x, 2)w(y, 2)w(y, 3)

1

2

w(y, 2)w(y, 3)

1

2

w(y, 2)w(y, 3)

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 12 / 33

From TSO to LCS 1/5

Thread 1: x = 1; y = 1; x = 2; y = 2; y = 3;

Thread 2: if (x == 2) { if (y == 0) { . . . } }

Write buffers are perfect FIFO channels

The write buffer of Thread 1

x

Mem

y

0

0

0

0

w(x, 1)w(y, 1)w(x, 2)w(y, 2)w(y, 3)

0

1

w(y, 1)w(x, 2)w(y, 2)w(y, 3)

1

1

w(x, 2)w(y, 2)w(y, 3)

1

2

w(y, 2)w(y, 3)

1

2

w(y, 2)w(y, 3)

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 12 / 33

From TSO to LCS 1/5

Thread 1: x = 1; y = 1; x = 2; y = 2; y = 3;

Thread 2: if (x == 2) { if (y == 0) { . . . } }

Write buffers are perfect FIFO channels

The write buffer of Thread 1

x

Mem

y

0

0

0

0

w(x, 1)w(y, 1)w(x, 2)w(y, 2)w(y, 3)

0

1

w(y, 1)w(x, 2)w(y, 2)w(y, 3)

1

1

w(x, 2)w(y, 2)w(y, 3)

1

2

w(y, 2)w(y, 3)

1

2

w(y, 2)w(y, 3)

Thread 2 reads x = 2

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 12 / 33

From TSO to LCS 1/5

Thread 1: x = 1; y = 1; x = 2; y = 2; y = 3;

Thread 2: if (x == 2) { if (y == 0) { . . . } }

Write buffers are perfect FIFO channels

The write buffer of Thread 1

x

Mem

y

0

0

0

0

w(x, 1)w(y, 1)w(x, 2)w(y, 2)w(y, 3)

0

1

w(y, 1)w(x, 2)w(y, 2)w(y, 3)

1

1

w(x, 2)w(y, 2)w(y, 3)

1

2

w(y, 2)w(y, 3)

1

2

w(y, 2)w(y, 3)

Thread 2 deadlocks as y = 1

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 12 / 33

From TSO to LCS 2/5

Thread 1: x = 1; y = 1; x = 2; y = 2; y = 3;

Thread 2: if (x == 2) { if (y == 0) { . . . } }

Write buffers made for batch processing

Batch processing is similar to lossiness

So assume write buffers are lossy FIFO channels

The write buffer of Thread 1

x

Mem

y

0

0

w(x, 1)w(y, 1)w(x, 2)w(y, 2)w(y, 3)

0

0

w(x, 1)w(y, 1)w(x, 2)w(y, 2)w(y, 3)

0

1

w(y, 1)w(x, 2)w(y, 2)w(y, 3)

0

2

w(y, 1)w(y, 2)w(y, 3)

0

2

w(y, 1)w(y, 2)w(y, 3)

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 13 / 33

From TSO to LCS 2/5

Thread 1: x = 1; y = 1; x = 2; y = 2; y = 3;

Thread 2: if (x == 2) { if (y == 0) { . . . } }

Write buffers made for batch processing

Batch processing is similar to lossiness

So assume write buffers are lossy FIFO channels

The write buffer of Thread 1

x

Mem

y

0

0

w(x, 1)w(y, 1)w(x, 2)w(y, 2)w(y, 3)

0

0

w(x, 1)w(y, 1)w(x, 2)w(y, 2)w(y, 3)

0

1

w(y, 1)w(x, 2)w(y, 2)w(y, 3)

0

2

w(y, 1)w(y, 2)w(y, 3)

0

2

w(y, 1)w(y, 2)w(y, 3)

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 13 / 33

From TSO to LCS 2/5

Thread 1: x = 1; y = 1; x = 2; y = 2; y = 3;

Thread 2: if (x == 2) { if (y == 0) { . . . } }

Write buffers made for batch processing

Batch processing is similar to lossiness

So assume write buffers are lossy FIFO channels

The write buffer of Thread 1

x

Mem

y

0

0

w(x, 1)w(y, 1)w(x, 2)w(y, 2)w(y, 3)

0

0

w(x, 1)w(y, 1)w(x, 2)w(y, 2)w(y, 3)

0

1

w(y, 1)w(x, 2)w(y, 2)w(y, 3)

0

2

w(y, 1)w(y, 2)w(y, 3)

0

2

w(y, 1)w(y, 2)w(y, 3)

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 13 / 33

From TSO to LCS 2/5

Thread 1: x = 1; y = 1; x = 2; y = 2; y = 3;

Thread 2: if (x == 2) { if (y == 0) { . . . } }

Write buffers made for batch processing

Batch processing is similar to lossiness

So assume write buffers are lossy FIFO channels

The write buffer of Thread 1

x

Mem

y

0

0

w(x, 1)w(y, 1)w(x, 2)w(y, 2)w(y, 3)

0

0

w(x, 1)w(y, 1)w(x, 2)w(y, 2)w(y, 3)

0

1

w(y, 1)w(x, 2)w(y, 2)w(y, 3)

0

2

w(y, 1)w(y, 2)w(y, 3)

0

2

w(y, 1)w(y, 2)w(y, 3)

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 13 / 33

From TSO to LCS 2/5

Thread 1: x = 1; y = 1; x = 2; y = 2; y = 3;

Thread 2: if (x == 2) { if (y == 0) { . . . } }

Write buffers made for batch processing

Batch processing is similar to lossiness

So assume write buffers are lossy FIFO channels

The write buffer of Thread 1

x

Mem

y

0

0

w(x, 1)w(y, 1)w(x, 2)w(y, 2)w(y, 3)

0

0

w(x, 1)w(y, 1)w(x, 2)w(y, 2)w(y, 3)

0

1

w(y, 1)w(x, 2)w(y, 2)w(y, 3)

0

2

w(y, 1)w(y, 2)w(y, 3)

0

2

w(y, 1)w(y, 2)w(y, 3)

Thread 2 reads x = 2

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 13 / 33

From TSO to LCS 2/5

Thread 1: x = 1; y = 1; x = 2; y = 2; y = 3;

Thread 2: if (x == 2) { if (y == 0) { . . . } }

Write buffers made for batch processing

Batch processing is similar to lossiness

So assume write buffers are lossy FIFO channels

The write buffer of Thread 1

x

Mem

y

0

0

w(x, 1)w(y, 1)w(x, 2)w(y, 2)w(y, 3)

0

0

w(x, 1)w(y, 1)w(x, 2)w(y, 2)w(y, 3)

0

1

w(y, 1)w(x, 2)w(y, 2)w(y, 3)

0

2

w(y, 1)w(y, 2)w(y, 3)

0

2

w(y, 1)w(y, 2)w(y, 3)

Thread 2 reads y = 0

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 13 / 33

From TSO to LCS 2/5

Thread 1: x = 1; y = 1; x = 2; y = 2; y = 3;

Thread 2: if (x == 2) { if (y == 0) { . . . } }

Write buffers made for batch processing

Batch processing is similar to lossiness

So assume write buffers are lossy FIFO channels

The write buffer of Thread 1

x

Mem

y

0

0

w(x, 1)w(y, 1)w(x, 2)w(y, 2)w(y, 3)

0

0

w(x, 1)w(y, 1)w(x, 2)w(y, 2)w(y, 3)

0

1

w(y, 1)w(x, 2)w(y, 2)w(y, 3)

0

2

w(y, 1)w(y, 2)w(y, 3)

0

2

w(y, 1)w(y, 2)w(y, 3)

This is wrong! Lost the effect of w(y, 1).

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 13 / 33

From TSO to LCS 3/5

TSO buffer = perfect FIFO channel

x

Mem

y

0

0

w(x, 1)w(y, 1)w(x, 2)w(y, 2)w(y, 3)

0

1

w(y, 1)w(x, 2)w(y, 2)w(y, 3)

1

1

w(x, 2)w(y, 2)w(y, 3)

1

2

w(y, 2)w(y, 3)

Channel = sequence of memory states + lossiness

x

Mem

y

0

0

y = 0

x = 1

y = 1

x = 1

y = 1

x = 2

y = 2

x = 2

y = 3

x = 2

0

0

y = 0

x = 1

y = 1

x = 1

y = 1

x = 2

y = 2

x = 2

y = 3

x = 2

0

0

y = 0

x = 1

y = 1

x = 1

y = 1

x = 2

y = 2

x = 2

y = 3

x = 2

0

1

y = 1

x = 1

y = 1

x = 2

y = 2

x = 2

y = 3

x = 2

1

2

y = 1

x = 1

y = 2

x = 2

y = 3

x = 2

Lossiness = unobservable memory states

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 14 / 33

From TSO to LCS 3/5

TSO buffer = perfect FIFO channel

x

Mem

y

0

0

w(x, 1)w(y, 1)w(x, 2)w(y, 2)w(y, 3)

0

1

w(y, 1)w(x, 2)w(y, 2)w(y, 3)

1

1

w(x, 2)w(y, 2)w(y, 3)

1

2

w(y, 2)w(y, 3)

Channel = sequence of memory states + lossiness

x

Mem

y

0

0

y = 0

x = 1

y = 1

x = 1

y = 1

x = 2

y = 2

x = 2

y = 3

x = 2

0

0

y = 0

x = 1

y = 1

x = 1

y = 1

x = 2

y = 2

x = 2

y = 3

x = 2

0

0

y = 0

x = 1

y = 1

x = 1

y = 1

x = 2

y = 2

x = 2

y = 3

x = 2

0

1

y = 1

x = 1

y = 1

x = 2

y = 2

x = 2

y = 3

x = 2

1

2

y = 1

x = 1

y = 2

x = 2

y = 3

x = 2

Lossiness = unobservable memory states
Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 14 / 33

From TSO to LCS 3/5

TSO buffer = perfect FIFO channel

x

Mem

y

0

0

w(x, 1)w(y, 1)w(x, 2)w(y, 2)w(y, 3)

0

1

w(y, 1)w(x, 2)w(y, 2)w(y, 3)

1

1

w(x, 2)w(y, 2)w(y, 3)

1

2

w(y, 2)w(y, 3)

Channel = sequence of memory states + lossiness

x

Mem

y

0

0

y = 0

x = 1

y = 1

x = 1

y = 1

x = 2

y = 2

x = 2

y = 3

x = 2

0

0

y = 0

x = 1

y = 1

x = 1

y = 1

x = 2

y = 2

x = 2

y = 3

x = 2

0

0

y = 0

x = 1

y = 1

x = 1

y = 1

x = 2

y = 2

x = 2

y = 3

x = 2

0

1

y = 1

x = 1

y = 1

x = 2

y = 2

x = 2

y = 3

x = 2

1

2

y = 1

x = 1

y = 2

x = 2

y = 3

x = 2

Lossiness = unobservable memory states
Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 14 / 33

From TSO to LCS 3/5

TSO buffer = perfect FIFO channel

x

Mem

y

0

0

w(x, 1)w(y, 1)w(x, 2)w(y, 2)w(y, 3)

0

1

w(y, 1)w(x, 2)w(y, 2)w(y, 3)

1

1

w(x, 2)w(y, 2)w(y, 3)

1

2

w(y, 2)w(y, 3)

Channel = sequence of memory states + lossiness

x

Mem

y

0

0

y = 0

x = 1

y = 1

x = 1

y = 1

x = 2

y = 2

x = 2

y = 3

x = 2

0

0

y = 0

x = 1

y = 1

x = 1

y = 1

x = 2

y = 2

x = 2

y = 3

x = 2

0

0

y = 0

x = 1

y = 1

x = 1

y = 1

x = 2

y = 2

x = 2

y = 3

x = 2

0

1

y = 1

x = 1

y = 1

x = 2

y = 2

x = 2

y = 3

x = 2

1

2

y = 1

x = 1

y = 2

x = 2

y = 3

x = 2

Lossiness = unobservable memory states
Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 14 / 33

From TSO to LCS 3/5

TSO buffer = perfect FIFO channel

x

Mem

y

0

0

w(x, 1)w(y, 1)w(x, 2)w(y, 2)w(y, 3)

0

1

w(y, 1)w(x, 2)w(y, 2)w(y, 3)

1

1

w(x, 2)w(y, 2)w(y, 3)

1

2

w(y, 2)w(y, 3)

Channel = sequence of memory states + lossiness

x

Mem

y

0

0

y = 0

x = 1

y = 1

x = 1

y = 1

x = 2

y = 2

x = 2

y = 3

x = 2

0

0

y = 0

x = 1

y = 1

x = 1

y = 1

x = 2

y = 2

x = 2

y = 3

x = 2

0

0

y = 0

x = 1

y = 1

x = 1

y = 1

x = 2

y = 2

x = 2

y = 3

x = 2

0

1

y = 1

x = 1

y = 1

x = 2

y = 2

x = 2

y = 3

x = 2

1

2

y = 1

x = 1

y = 2

x = 2

y = 3

x = 2

Lossiness = unobservable memory states
Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 14 / 33

From TSO to LCS 3/5

TSO buffer = perfect FIFO channel

x

Mem

y

0

0

w(x, 1)w(y, 1)w(x, 2)w(y, 2)w(y, 3)

0

1

w(y, 1)w(x, 2)w(y, 2)w(y, 3)

1

1

w(x, 2)w(y, 2)w(y, 3)

1

2

w(y, 2)w(y, 3)

Channel = sequence of memory states + lossiness

x

Mem

y

0

0

y = 0

x = 1

y = 1

x = 1

y = 1

x = 2

y = 2

x = 2

y = 3

x = 2

0

0

y = 0

x = 1

y = 1

x = 1

y = 1

x = 2

y = 2

x = 2

y = 3

x = 2

0

0

y = 0

x = 1

y = 1

x = 1

y = 1

x = 2

y = 2

x = 2

y = 3

x = 2

0

1

y = 1

x = 1

y = 1

x = 2

y = 2

x = 2

y = 3

x = 2

1

2

y = 1

x = 1

y = 2

x = 2

y = 3

x = 2

Lossiness = unobservable memory states
Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 14 / 33

From TSO to LCS 3/5

TSO buffer = perfect FIFO channel

x

Mem

y

0

0

w(x, 1)w(y, 1)w(x, 2)w(y, 2)w(y, 3)

0

1

w(y, 1)w(x, 2)w(y, 2)w(y, 3)

1

1

w(x, 2)w(y, 2)w(y, 3)

1

2

w(y, 2)w(y, 3)

Channel = sequence of memory states + lossiness

x

Mem

y

0

0

y = 0

x = 1

y = 1

x = 1

y = 1

x = 2

y = 2

x = 2

y = 3

x = 2

0

0

y = 0

x = 1

y = 1

x = 1

y = 1

x = 2

y = 2

x = 2

y = 3

x = 2

0

0

y = 0

x = 1

y = 1

x = 1

y = 1

x = 2

y = 2

x = 2

y = 3

x = 2

0

1

y = 1

x = 1

y = 1

x = 2

y = 2

x = 2

y = 3

x = 2

1

2

y = 1

x = 1

y = 2

x = 2

y = 3

x = 2

Lossiness = unobservable memory states
Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 14 / 33

From TSO to LCS 3/5

TSO buffer = perfect FIFO channel

x

Mem

y

0

0

w(x, 1)w(y, 1)w(x, 2)w(y, 2)w(y, 3)

0

1

w(y, 1)w(x, 2)w(y, 2)w(y, 3)

1

1

w(x, 2)w(y, 2)w(y, 3)

1

2

w(y, 2)w(y, 3)

Channel = sequence of memory states + lossiness

x

Mem

y

0

0

y = 0

x = 1

y = 1

x = 1

y = 1

x = 2

y = 2

x = 2

y = 3

x = 2

0

0

y = 0

x = 1

y = 1

x = 1

y = 1

x = 2

y = 2

x = 2

y = 3

x = 2

0

0

y = 0

x = 1

y = 1

x = 1

y = 1

x = 2

y = 2

x = 2

y = 3

x = 2

0

1

y = 1

x = 1

y = 1

x = 2

y = 2

x = 2

y = 3

x = 2

1

2

y = 1

x = 1

y = 2

x = 2

y = 3

x = 2

Lossiness = unobservable memory states
Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 14 / 33

From TSO to LCS 4/5

Problem: Interference between threads?

Each thread guesses writes of other threads

Thread Memory

Write: Compute a new memory state; send it to the channel

Read: Check the channel/memory

Memory update: Receive a state; copy it to the memory

Guessed Write: Send the guessed state to the channel

Check that all threads agree on their guesses

Synchronization of the LCS over send actions

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 15 / 33

From TSO to LCS 4/5

Problem: Interference between threads?

Each thread guesses writes of other threads

Thread Memory

Write: Compute a new memory state; send it to the channel

Read: Check the channel/memory

Memory update: Receive a state; copy it to the memory

Guessed Write: Send the guessed state to the channel

Check that all threads agree on their guesses

Synchronization of the LCS over send actions

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 15 / 33

From TSO to LCS 4/5

Problem: Interference between threads?

Each thread guesses writes of other threads

Thread Memory

Write: Compute a new memory state; send it to the channel

Read: Check the channel/memory

Memory update: Receive a state; copy it to the memory

Guessed Write: Send the guessed state to the channel

Check that all threads agree on their guesses

Synchronization of the LCS over send actions

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 15 / 33

From TSO to LCS 4/5

Problem: Interference between threads?

Each thread guesses writes of other threads

Thread Memory

Write: Compute a new memory state; send it to the channel

Read: Check the channel/memory

Memory update: Receive a state; copy it to the memory

Guessed Write: Send the guessed state to the channel

Check that all threads agree on their guesses

Synchronization of the LCS over send actions

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 15 / 33

From TSO to LCS 4/5

Problem: Interference between threads?

Each thread guesses writes of other threads

Thread Memory

Write: Compute a new memory state; send it to the channel

Read: Check the channel/memory

Memory update: Receive a state; copy it to the memory

Guessed Write: Send the guessed state to the channel

Check that all threads agree on their guesses

Synchronization of the LCS over send actions

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 15 / 33

From TSO to LCS 5/5

Theorem [ABBM 2010]

The state reachability problem for TSO is reducible to the
control-state reachability problem for LCS.

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 16 / 33

State Reachability: Conclusion

Decidable for TSO (and beyond)

But it is a hard problem — non-primitive recursive

However, it is possible to have efficient analysis techniques

Abstraction-based techniques:

e.g., [Kuperstein, Vechev, Yahav, PLDI’11]

Symbolic techniques:

[Abdulla, Atig, Chen, Leonardson, Rezine, TACAS’12]

[Linden, Wolper, SPIN’10’11]

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 17 / 33

Robustness

[Bouajjani, M., Möhlmann, ICALP’11]

[Bouajjani, Derevenetc, M., ESOP’13]

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 18 / 33

Robustness against TSO

Idea of robustness:

TSO behavior that deviates from SC is a programming error

What is the notion of behavior?

Trace Robustness:

TSO- and SC-traces are the same [Shasha, Snir’88]

Good: Allows for quite relaxed behaviors

Very Good: Only PSPACE-complete

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 19 / 33

Robustness against TSO

Idea of robustness:

TSO behavior that deviates from SC is a programming error

What is the notion of behavior?

Trace Robustness:

TSO- and SC-traces are the same [Shasha, Snir’88]

Good: Allows for quite relaxed behaviors

Very Good: Only PSPACE-complete

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 19 / 33

Robustness against TSO

Idea of robustness:

TSO behavior that deviates from SC is a programming error

What is the notion of behavior?

Trace Robustness:

TSO- and SC-traces are the same [Shasha, Snir’88]

Good: Allows for quite relaxed behaviors

Very Good: Only PSPACE-complete

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 19 / 33

Robustness against TSO

Idea of robustness:

TSO behavior that deviates from SC is a programming error

What is the notion of behavior?

Trace Robustness:

TSO- and SC-traces are the same [Shasha, Snir’88]

Good: Allows for quite relaxed behaviors

Very Good: Only PSPACE-complete

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 19 / 33

Robustness against TSO

Idea of robustness:

TSO behavior that deviates from SC is a programming error

What is the notion of behavior?

Trace Robustness:

TSO- and SC-traces are the same [Shasha, Snir’88]

Good: Allows for quite relaxed behaviors

Very Good: Only PSPACE-complete

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 19 / 33

Traces 1/2

Computation = sequence of actions as seen by memory

x = y = 0

Thread 1

a : x = 1

b : if (y == 0){
c : crit. sect. 1

d : }

Thread 2

p : y = 1

q : if (x == 0){
r : crit. sect. 2

s : }

Thread 1

pc = a

Thread 2

pc = p

Mem

x

0

y

0

r(y , 0) · w(y , 1) · r(x , 0) · w(x , 1)

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 20 / 33

Traces 1/2

Computation = sequence of actions as seen by memory

x = y = 0

Thread 1

a : x = 1

b : if (y == 0){
c : crit. sect. 1

d : }

Thread 2

p : y = 1

q : if (x == 0){
r : crit. sect. 2

s : }

Thread 1

pc = b

Thread 2

pc = p

w(x , 1)

Mem

x

0

y

0

r(y , 0) · w(y , 1) · r(x , 0) · w(x , 1)

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 20 / 33

Traces 1/2

Computation = sequence of actions as seen by memory

x = y = 0

Thread 1

a : x = 1

b : if (y == 0){
c : crit. sect. 1

d : }

Thread 2

p : y = 1

q : if (x == 0){
r : crit. sect. 2

s : }

Thread 1

pc = c

Thread 2

pc = p

w(x , 1)

Mem

x

0

y

0

r(y , 0)

· w(y , 1) · r(x , 0) · w(x , 1)

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 20 / 33

Traces 1/2

Computation = sequence of actions as seen by memory

x = y = 0

Thread 1

a : x = 1

b : if (y == 0){
c : crit. sect. 1

d : }

Thread 2

p : y = 1

q : if (x == 0){
r : crit. sect. 2

s : }

Thread 1

pc = c

Thread 2

pc = q

w(x , 1)

w(y , 1)

Mem

x

0

y

0

r(y , 0)

· w(y , 1) · r(x , 0) · w(x , 1)

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 20 / 33

Traces 1/2

Computation = sequence of actions as seen by memory

x = y = 0

Thread 1

a : x = 1

b : if (y == 0){
c : crit. sect. 1

d : }

Thread 2

p : y = 1

q : if (x == 0){
r : crit. sect. 2

s : }

Thread 1

pc = c

Thread 2

pc = q

w(x , 1)

Mem

x

0

y

1

r(y , 0) · w(y , 1)

· r(x , 0) · w(x , 1)

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 20 / 33

Traces 1/2

Computation = sequence of actions as seen by memory

x = y = 0

Thread 1

a : x = 1

b : if (y == 0){
c : crit. sect. 1

d : }

Thread 2

p : y = 1

q : if (x == 0){
r : crit. sect. 2

s : }

Thread 1

pc = c

Thread 2

pc = r

w(x , 1)

Mem

x

0

y

1

r(y , 0) · w(y , 1) · r(x , 0)

· w(x , 1)

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 20 / 33

Traces 1/2

Computation = sequence of actions as seen by memory

x = y = 0

Thread 1

a : x = 1

b : if (y == 0){
c : crit. sect. 1

d : }

Thread 2

p : y = 1

q : if (x == 0){
r : crit. sect. 2

s : }

Thread 1

pc = c

Thread 2

pc = r

Mem

x

1

y

1

r(y , 0) · w(y , 1) · r(x , 0) · w(x , 1)

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 20 / 33

Traces 1/2

Computation = sequence of actions as seen by memory

x = y = 0

Thread 1

a : x = 1

b : if (y == 0){
c : crit. sect. 1

d : }

Thread 2

p : y = 1

q : if (x == 0){
r : crit. sect. 2

s : }

Thread 1

pc = c

Thread 2

pc = r

Mem

x

1

y

1

r(y , 0) · w(y , 1) · r(x , 0) · w(x , 1)

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 20 / 33

Traces 2/2

Traces abstract computations to happens before dependencies

Program order: Order of actions issued by a thread

Store order: Order of writes to a variable

Source relation: write is source of read.

Conflict relation: read is overwritten by write.

Trace(r(y , 0) · w(y , 1) · r(x , 0) · w(x , 1))

w(x , 1)

r(y , 0)

w(y , 1)

r(x , 0)

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 21 / 33

Traces 2/2

Traces abstract computations to happens before dependencies

Program order: Order of actions issued by a thread

Store order: Order of writes to a variable

Source relation: write is source of read.

Conflict relation: read is overwritten by write.

Trace(r(y , 0) · w(y , 1) · r(x , 0) · w(x , 1))

w(x , 1)

r(y , 0)

w(y , 1)

r(x , 0)

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 21 / 33

Traces 2/2

Traces abstract computations to happens before dependencies

Program order: Order of actions issued by a thread

Store order: Order of writes to a variable

Source relation: write is source of read.

Conflict relation: read is overwritten by write.

Trace(r(y , 0) · w(y , 1) · r(x , 0) · w(x , 1))

w(x , 1)

r(y , 0)

w(y , 1)

r(x , 0)

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 21 / 33

Traces 2/2

Traces abstract computations to happens before dependencies

Program order: Order of actions issued by a thread

Store order: Order of writes to a variable

Source relation: write is source of read.

Conflict relation: read is overwritten by write.

Trace(r(y , 0) · w(y , 1) · r(x , 0) · w(x , 1))

w(x , 1)

r(y , 0)

w(y , 1)

r(x , 0)

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 21 / 33

Traces 2/2

Traces abstract computations to happens before dependencies

Program order: Order of actions issued by a thread

Store order: Order of writes to a variable

Source relation: write is source of read.

Conflict relation: read is overwritten by write.

Trace(r(y , 0) · w(y , 1) · r(x , 0) · w(x , 1))

w(x , 1)

r(y , 0)

w(y , 1)

r(x , 0)

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 21 / 33

Trace Robustness Problem

Consider a memory model MM

Trace Robustness Problem against MM

Input: Program P.

Problem: Does TracesMM(P) ⊆ TracesSC(P) hold?

Decidability / Complexity ?

Proof method

Theorem [Shasha, Snir 1988]

Program P is robust against MM iff all traces in TracesMM(P)
are acyclic.

Shasha and Snir do not give an algorithm to find cyclic traces!

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 22 / 33

Trace Robustness Problem

Consider a memory model MM

Trace Robustness Problem against MM

Input: Program P.

Problem: Does TracesMM(P) ⊆ TracesSC(P) hold?

Decidability / Complexity ?

Proof method

Theorem [Shasha, Snir 1988]

Program P is robust against MM iff all traces in TracesMM(P)
are acyclic.

Shasha and Snir do not give an algorithm to find cyclic traces!

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 22 / 33

Trace Robustness Problem

Consider a memory model MM

Trace Robustness Problem against MM

Input: Program P.

Problem: Does TracesMM(P) ⊆ TracesSC(P) hold?

Decidability / Complexity ?

Proof method

Theorem [Shasha, Snir 1988]

Program P is robust against MM iff all traces in TracesMM(P)
are acyclic.

Shasha and Snir do not give an algorithm to find cyclic traces!

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 22 / 33

Trace Robustness Problem

Consider a memory model MM

Trace Robustness Problem against MM

Input: Program P.

Problem: Does TracesMM(P) ⊆ TracesSC(P) hold?

Decidability / Complexity ?

Proof method

Theorem [Shasha, Snir 1988]

Program P is robust against MM iff all traces in TracesMM(P)
are acyclic.

Shasha and Snir do not give an algorithm to find cyclic traces!

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 22 / 33

Robustness

[Bouajjani, M., Möhlmann, ICALP’11]

[Bouajjani, Derevenetc, M., ESOP’13]

Upper Bound:

Combinatorics

From Robustness to SC Reachability

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 23 / 33

Deciding Robustness

TSO-computations

Robust
Computations

Minimal

Violations = ∅ ?

Understand shape of minimal violations

Check whether computation of this shape exists

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 24 / 33

Deciding Robustness

TSO-computations

Robust
Computations

Minimal

Violations = ∅ ?

Understand shape of minimal violations

Check whether computation of this shape exists

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 24 / 33

Deciding Robustness

TSO-computations

Robust
Computations

Minimal

Violations = ∅ ?

Understand shape of minimal violations

Check whether computation of this shape exists

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 24 / 33

Robustness

[Bouajjani, M., Möhlmann, ICALP’11]

[Bouajjani, Derevenetc, M., ESOP’13]

Upper Bound:

Combinatorics — Locality and Attacks

From Robustness to SC Reachability

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 25 / 33

Locality of Robustness 1/3

Goal: Locality

We can restrict ourselves to violations where only one thread
reorders its actions.

Proof tool: Minimal violations

Number of inversions (out-of-program-order placements) minimal
among all violating computations

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 26 / 33

Locality of Robustness 2/3

Consider minimal violation 𝛼 · b · 𝛽 · a · 𝛾 where b has overtaken a

Then b and a have happens before path through 𝛽

Subword b1 . . . bk with

bi →src/st/cf bi+1 or bi →+
p bi+1

w(x , 1)

r(y , 0)

w(y , 1)

r(x , 0)

r(y , 0) · w(y , 1) · r(x , 0) · w(x , 1)⏟ ⏞
→hb

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 27 / 33

Locality of Robustness 2/3

Consider minimal violation 𝛼 · b · 𝛽 · a · 𝛾 where b has overtaken a

Then b and a have happens before path through 𝛽

Subword b1 . . . bk with

bi →src/st/cf bi+1 or bi →+
p bi+1

w(x , 1)

r(y , 0)

w(y , 1)

r(x , 0)

r(y , 0) · w(y , 1) · r(x , 0) · w(x , 1)⏟ ⏞
→hb

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 27 / 33

Locality of Robustness 2/3

Consider minimal violation 𝛼 · b · 𝛽 · a · 𝛾 where b has overtaken a

Then b and a have happens before path through 𝛽

Subword b1 . . . bk with

bi →src/st/cf bi+1 or bi →+
p bi+1

w(x , 1)

r(y , 0)

w(y , 1)

r(x , 0)

r(y , 0) · w(y , 1) · r(x , 0) · w(x , 1)⏟ ⏞
→hb

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 27 / 33

Locality of Robustness 2/3

Consider minimal violation 𝛼 · b · 𝛽 · a · 𝛾 where b has overtaken a

Then b and a have happens before path through 𝛽

Subword b1 . . . bk with

bi →src/st/cf bi+1 or bi →+
p bi+1

w(x , 1)

r(y , 0)

w(y , 1)

r(x , 0)

r(y , 0) · w(y , 1) · r(x , 0) · w(x , 1)⏟ ⏞
→hb

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 27 / 33

Locality of Robustness 3/3

Theorem (Locality) [BMM 2011]

In a minimal violation, only a single thread uses its buffer.

Proof sketch

Pick last writes that are overtaken in two threads ti and tj :

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 28 / 33

Locality of Robustness 3/3

Theorem (Locality) [BMM 2011]

In a minimal violation, only a single thread uses its buffer.

Proof sketch

Pick last writes that are overtaken in two threads ti and tj :

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 28 / 33

Locality of Robustness 3/3

Theorem (Locality) [BMM 2011]

In a minimal violation, only a single thread uses its buffer.

Proof sketch

Pick last writes that are overtaken in two threads ti and tj :
Case 1: No interference

rj wj ri wi

Lemma: happens before cycle rj →+
hb wj →+

p rj
Read ri not involved, delete everything from ri on
Saves a reordering, contradiction to minimality

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 28 / 33

Locality of Robustness 3/3

Theorem (Locality) [BMM 2011]

In a minimal violation, only a single thread uses its buffer.

Proof sketch

Pick last writes that are overtaken in two threads ti and tj :
Case 1: No interference

rj wj ri wi

Lemma: happens before cycle rj →+
hb wj →+

p rj

Read ri not involved, delete everything from ri on
Saves a reordering, contradiction to minimality

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 28 / 33

Locality of Robustness 3/3

Theorem (Locality) [BMM 2011]

In a minimal violation, only a single thread uses its buffer.

Proof sketch

Pick last writes that are overtaken in two threads ti and tj :
Case 1: No interference

rj wj ri wi

Lemma: happens before cycle rj →+
hb wj →+

p rj
Read ri not involved, delete everything from ri on

Saves a reordering, contradiction to minimality

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 28 / 33

Locality of Robustness 3/3

Theorem (Locality) [BMM 2011]

In a minimal violation, only a single thread uses its buffer.

Proof sketch

Pick last writes that are overtaken in two threads ti and tj :
Case 1: No interference

rj wj wi

Lemma: happens before cycle rj →+
hb wj →+

p rj
Read ri not involved, delete everything from ri on
Saves a reordering, contradiction to minimality

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 28 / 33

Locality of Robustness 3/3

Theorem (Locality) [BMM 2011]

In a minimal violation, only a single thread uses its buffer.

Proof sketch

Pick last writes that are overtaken in two threads ti and tj :
Case 2: Overlap

ri rj wj wi

Argumentation similar, delete again ri

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 28 / 33

Locality of Robustness 3/3

Theorem (Locality) [BMM 2011]

In a minimal violation, only a single thread uses its buffer.

Proof sketch

Pick last writes that are overtaken in two threads ti and tj :
Case 2: Overlap

ri rj wj wi

Argumentation similar, delete again ri

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 28 / 33

Locality of Robustness 3/3

Theorem (Locality) [BMM 2011]

In a minimal violation, only a single thread uses its buffer.

Proof sketch

Pick last writes that are overtaken in two threads ti and tj :
Case 3: Interference

rj ri wj wi

Lemma: happens before cycle rj →+
hb wj →+

p rj
Only thread ti may contribute, delete rest
Lemma: happens before cycle ri →+

hb wi →+
p ri

Read rj not on this cycle, delete it, contradiction

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 28 / 33

Locality of Robustness 3/3

Theorem (Locality) [BMM 2011]

In a minimal violation, only a single thread uses its buffer.

Proof sketch

Pick last writes that are overtaken in two threads ti and tj :
Case 3: Interference

rj ri wj wi

Lemma: happens before cycle rj →+
hb wj →+

p rj

Only thread ti may contribute, delete rest
Lemma: happens before cycle ri →+

hb wi →+
p ri

Read rj not on this cycle, delete it, contradiction

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 28 / 33

Locality of Robustness 3/3

Theorem (Locality) [BMM 2011]

In a minimal violation, only a single thread uses its buffer.

Proof sketch

Pick last writes that are overtaken in two threads ti and tj :
Case 3: Interference

rj ri wj wi

Lemma: happens before cycle rj →+
hb wj →+

p rj
Only thread ti may contribute, delete rest

Lemma: happens before cycle ri →+
hb wi →+

p ri
Read rj not on this cycle, delete it, contradiction

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 28 / 33

Locality of Robustness 3/3

Theorem (Locality) [BMM 2011]

In a minimal violation, only a single thread uses its buffer.

Proof sketch

Pick last writes that are overtaken in two threads ti and tj :
Case 3: Interference

rj ri wj wi
↑ ti

Lemma: happens before cycle rj →+
hb wj →+

p rj
Only thread ti may contribute, delete rest
Lemma: happens before cycle ri →+

hb wi →+
p ri

Read rj not on this cycle, delete it, contradiction

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 28 / 33

Locality of Robustness 3/3

Theorem (Locality) [BMM 2011]

In a minimal violation, only a single thread uses its buffer.

Proof sketch

Pick last writes that are overtaken in two threads ti and tj :
Case 3: Interference

ri wj wi
↑ ti

Lemma: happens before cycle rj →+
hb wj →+

p rj
Only thread ti may contribute, delete rest
Lemma: happens before cycle ri →+

hb wi →+
p ri

Read rj not on this cycle, delete it, contradiction

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 28 / 33

Characterization of Robustness via Attacks 1/2

Reformulate Robustness

absence of feasible attacks

If P is not robust, there are these violation:

r r w
𝛼 𝜌 𝛽 𝜔

Attacker The thread that uses its buffer: only one by locality

Helpers Remaining threads close cycle: r →+
hb w w →+

p r

r(y , 0) · w(y , 1) · r(x , 0) · w(x , 1)⏟ ⏞
→hb

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 29 / 33

Characterization of Robustness via Attacks 1/2

Reformulate Robustness

absence of feasible attacks

If P is not robust, there are these violation:

r r w
𝛼 𝜌 𝛽 𝜔

Attacker The thread that uses its buffer: only one by locality

Helpers Remaining threads close cycle: r →+
hb w w →+

p r

r(y , 0) · w(y , 1) · r(x , 0) · w(x , 1)⏟ ⏞
→hb

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 29 / 33

Characterization of Robustness via Attacks 1/2

Reformulate Robustness

absence of feasible attacks

If P is not robust, there are these violation:

r r w
𝛼 𝜌 𝛽 𝜔

Attacker The thread that uses its buffer: only one by locality

Helpers Remaining threads close cycle: r →+
hb w w →+

p r

r(y , 0) · w(y , 1) · r(x , 0) · w(x , 1)⏟ ⏞
→hb

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 29 / 33

Characterization of Robustness via Attacks 1/2

Reformulate Robustness

absence of feasible attacks

If P is not robust, there are these violation:

r r w
𝛼 𝜌 𝛽 𝜔

Attacker The thread that uses its buffer: only one by locality

Helpers Remaining threads close cycle: r →+
hb w w →+

p r

r(y , 0) · w(y , 1) · r(x , 0) · w(x , 1)⏟ ⏞
→hb

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 29 / 33

Characterization of Robustness via Attacks 1/2

Reformulate Robustness

absence of feasible attacks

If P is not robust, there are these violation:

r r w
𝛼 𝜌 𝛽 𝜔

Attacker The thread that uses its buffer: only one by locality

Helpers Remaining threads close cycle: r →+
hb w w →+

p r

r(y , 0) · w(y , 1) · r(x , 0) · w(x , 1)⏟ ⏞
→hb

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 29 / 33

Characterization of Robustness via Attacks 2/2

Fix thread, write instruction, read instruction

Given these parameters, find a violation as above

Attack

An attack is a triple A = (thread ,write, read)

A TSO witness for attack A is a computation as above:

r r w
𝛼 𝜌 𝛽 𝜔

Theorem [BDM’13]

Program P is robust if and only if no attack has a TSO witness.

The number of attacks is quadratic in the size of P.

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 30 / 33

Characterization of Robustness via Attacks 2/2

Fix thread, write instruction, read instruction

Given these parameters, find a violation as above

Attack

An attack is a triple A = (thread ,write, read)

A TSO witness for attack A is a computation as above:

r r w
𝛼 𝜌 𝛽 𝜔

Theorem [BDM’13]

Program P is robust if and only if no attack has a TSO witness.

The number of attacks is quadratic in the size of P.

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 30 / 33

Characterization of Robustness via Attacks 2/2

Fix thread, write instruction, read instruction

Given these parameters, find a violation as above

Attack

An attack is a triple A = (thread ,write, read)

A TSO witness for attack A is a computation as above:

r r w
𝛼 𝜌 𝛽 𝜔

Theorem [BDM’13]

Program P is robust if and only if no attack has a TSO witness.

The number of attacks is quadratic in the size of P.

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 30 / 33

Characterization of Robustness via Attacks 2/2

Fix thread, write instruction, read instruction

Given these parameters, find a violation as above

Attack

An attack is a triple A = (thread ,write, read)

A TSO witness for attack A is a computation as above:

r r w
𝛼 𝜌 𝛽 𝜔

Theorem [BDM’13]

Program P is robust if and only if no attack has a TSO witness.

The number of attacks is quadratic in the size of P.

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 30 / 33

Robustness

[Bouajjani, M., Möhlmann, ICALP’11]

[Bouajjani, Derevenetc, M., ESOP’13]

Upper Bound:

Combinatorics

From Robustness to SC Reachability

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 31 / 33

Finding TSO Witnesses with SC Reachability

TSO witnesses for attack A considerably restrict TSO behavior,

enough to find TSO witnesses with SC reachability

r r w
𝛼 𝜌 𝛽 𝜔

Let attacker execute under SC

Problem Writes may conflict with helper reads

Solution Hide them from other threads

· r r
𝛼 𝜌 𝜔 𝛽

Theorem [BDM’13]

Attack A has a TSO witness iff PA reaches goal state under SC.

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 32 / 33

Finding TSO Witnesses with SC Reachability

TSO witnesses for attack A considerably restrict TSO behavior,

enough to find TSO witnesses with SC reachability

r r w
𝛼 𝜌 𝛽 𝜔

Let attacker execute under SC

Problem Writes may conflict with helper reads

Solution Hide them from other threads

· r r
𝛼 𝜌 𝜔 𝛽

Theorem [BDM’13]

Attack A has a TSO witness iff PA reaches goal state under SC.

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 32 / 33

Finding TSO Witnesses with SC Reachability

TSO witnesses for attack A considerably restrict TSO behavior,

enough to find TSO witnesses with SC reachability

r r w
𝛼 𝜌 𝛽 𝜔

Let attacker execute under SC

Problem Writes may conflict with helper reads

Solution Hide them from other threads

· r r
𝛼 𝜌 𝜔 𝛽

Theorem [BDM’13]

Attack A has a TSO witness iff PA reaches goal state under SC.

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 32 / 33

Finding TSO Witnesses with SC Reachability

TSO witnesses for attack A considerably restrict TSO behavior,

enough to find TSO witnesses with SC reachability

r r w
𝛼 𝜌 𝛽 𝜔

Let attacker execute under SC

Problem Writes may conflict with helper reads

Solution Hide them from other threads

w · r r
𝛼 𝜌 𝜔 𝛽

Theorem [BDM’13]

Attack A has a TSO witness iff PA reaches goal state under SC.

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 32 / 33

Finding TSO Witnesses with SC Reachability

TSO witnesses for attack A considerably restrict TSO behavior,

enough to find TSO witnesses with SC reachability

r r w
𝛼 𝜌 𝛽 𝜔

Let attacker execute under SC

Problem Writes may conflict with helper reads

Solution Hide them from other threads

w · r r X𝛼 𝜌 𝜔 𝛽

Theorem [BDM’13]

Attack A has a TSO witness iff PA reaches goal state under SC.

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 32 / 33

Finding TSO Witnesses with SC Reachability

TSO witnesses for attack A considerably restrict TSO behavior,

enough to find TSO witnesses with SC reachability

r r w
𝛼 𝜌 𝛽 𝜔

Let attacker execute under SC

Problem Writes may conflict with helper reads

Solution Hide them from other threads

wloc · r r
𝛼 𝜌 𝜔loc 𝛽

Theorem [BDM’13]

Attack A has a TSO witness iff PA reaches goal state under SC.

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 32 / 33

Finding TSO Witnesses with SC Reachability

TSO witnesses for attack A considerably restrict TSO behavior,

enough to find TSO witnesses with SC reachability

r r w
𝛼 𝜌 𝛽 𝜔

Let attacker execute under SC

Problem Writes may conflict with helper reads

Solution Hide them from other threads

wloc · r r
𝛼 𝜌 𝜔loc 𝛽

Theorem [BDM’13]

Attack A has a TSO witness iff PA reaches goal state under SC.

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 32 / 33

Trace Robustness: Conclusion

Decidable for TSO (and beyond)

Is an easy problem — PSPACE-complete

Locality: only one thread uses the buffer

Analysis parallelizable

Monitoring techniques:

e.g., [Burckhardt, Musuvathi CAV’08, Sen et al. TACAS’11]

Static analysis:

[Shasha Snir TOPLAS’88, Alglave, Maranget CAV’11]

Semantics:
[Owens ECOOP’10]

Roland Meyer (TU-KL) Verification under Relaxed Memory Models Moscow December 2013 33 / 33

	Shared Memory Concurrency
	Sequential Consistency Semantics
	Total Store Ordering Semantics

	Reachability
	Robustness

